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Overview of Cluster Analysis

1. Cluster Analysis:

“The process of grouping a set of physical or abstract objects into classes of similar objects is called
clustering”

A cluster is a collection of data objects that are similar to one another within the same cluster and
are dissimilar to the objects in other clusters.

2. Types of Data in Cluster Analysis

Data matrix (or object-by-variable structure): This represents n objects, such as per-
sons, with p variables (also called measurements or attributes), such as age, height,
weight, gender, and so on. The structure is in the form of a relational table, or n-by-p
matrix (n objects x p variables):

X11 et X1F . 9
Xi1 ottt Xif "t Xip
Xnl T Xnf Tt Xnp

Dissimilarity matrix (or object-by-object structure): This stores a collection of prox-
imities that are available for all pairs of n objects. It is often represented by an n-by-n
table:

0
d(2,1) 0
d(3,1) d(3,2) 0

| d(n,1) d(n,2) --- -+ 0 |
where d(i, j) is the measured difference or dissimilarity between objects i and j. ]

2.1 Interval-Scaled Variables

Interval-scaled variables are continuous measurements of a linear scale. Typical examples include
weight and height, latitude and longitude coordinates (e.g., when clustering houses), and weather
temperature

Standardise the values using z-score normalization (see following formulas)
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I. Calculate the mean absolute deviation, s;:

1
Sf= ;(|x1f—mf|—|—|x2f—mf| —l—---—|—|xnf—mf|),

where x17,..., Xny are n measurements of f, and my is the mean value of f, that is,
mp = L(x1p+x20 + -+ xnp).

2. Calculate the standardized measurement, or z-score:

Xif —my
Zif = 5

After standardization, or without standardization in certain applications, the dissimi-
larity (or similarity) between the objects described by interval-scaled variables is typically
computed based on the distance between each pair of objects. The most popular distance
measure is Euclidean distance, which is defined as

d(i, j) = \/(Xn —xj1)?+ (g —xjp)? + - 4 (X — Xju)?s

where i = (xj1, X2, ..., Xin) and j = (xj1, Xj2,. .., Xjx) are two n-dimensional data objects.
Another well-known metric is Manhattan (or city block) distance, defined as

d(i, j) = |xip —xji| + |xia — x|+ 4 |Xin — X

Minkowski distance is a generalization of both Euclidean distance and Manhattan
distance. It is defined as

. . /
d(i, j) = (Jxi — x| + [x2 — x| + -+ + xin — x;u|) /7,

where p is a positive integer. Such a distance is also called L, norm, in some literature.
It represents the Manhattan distance when p = 1 (i.e., L norm) and Euclidean distance
when p =2 (i.e., Lo norm).

If each variable is assigned a weight according to its perceived importance, the weighted
Euclidean distance can be computed as

d(i, j) = \/Wl [xii —xj1 |2 +waxia — x|+ Wy | Xi — X |2
Weighting can also be applied to the Manhattan and Minkowski distances.

2. Binary Variables

A binary variable has only two states: 0 or 1, where 0 means that the variable is absent, and 1 means
that it is present.

If all binary variables are thought of as having the same weight, we have the 2-by-2 contingency
table

where q is the number of variables that equal 1 for both objects i and j,

ris the number of variables that equal 1 for object i but that are O for object j,
s is the number of variables that equal O for object i but equal 1 for object j,
tis the number of variables that equal O for both objects i and j.

The total number of variables is p, where p = g+r +s+t
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A contingency table for binary variables.

object j
1 ] sum
1 q r q+r
object i 0 s t s+1
sum qg-+s r+t p
d(i, j) = L
gt+r+s+t

The dissimilarity based on such variables is called asymmetric binary dissimilarity, where the number
of negative matches, t, is considered unimportant.

r—+s
dii, jy = —>
(. J) q+r—+s
sim(i, j) = # —1—d(, j).

The coefficient sim(i, j) is called the Jaccard coefficient

Dissimilarity between binary variables. Suppose that a patient record table

contains the attributes name, gender, fever, cough, test-1, test-2, test-3, and test-4, where
name is an object identifier, gender is a symmetric attribute, and the remaining attributes
are asymmetric binary.

A relational table where patients are described by binary attributes.

name gender fever cough test-l test-2 test-3 test-4
Jack M Y N P N N N
Mary F Y N P N P N
Jim M Y Y N N N N
d(Jack, Mary) = 2%’11 =0.33
d(Jack, Jim) = ]Jlr%ll =0.67
d(Mary, Jim) = ]_H'Ez =0.75

3. Categorical, Ordinal,

and Ratio-Scaled Variables
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Categorical Variable

A categorical variable is a generalization of the binary variable in that it can take on more than two
states.

For example, map color is a categorical variable that may have, say, five states: red, yellow, green,
pink, and blue.

Let the number of states of a categorical variable be M.
The dissimilarity between two objects i and j can be computed based on the ratio of mismatches:

where m is the number of matches (i.e., the number of variables for which i and j are in the same
state), and p is the total number of variables.

.. p—m
d(i, j) = ——
p

Dissimilarity between categorical variables. Suppose that we have the sample data of Table 7.3, except
that only the object-identifier and the variable (or attribute) test-1 are available, where test-1 is
categorical.

Table 7.3 A sample data table containing variables of mixed type.

object test-| test-2 test-3

identifier (categorical) (ordinal) (ratio-scaled)

1 code-A excellent 445
2 code-B fair 22
3 code-C good 164
4 code-A excellent 1,210
0
d(2,1) 0

d(3,1) d(3,2) 0
d(4,1) d(4,2) d(4,3) 0

Since here we have one categorical variable, test-1, so that d(i, j) evaluates to 0 if objects i and j
match, and 1 if the objects differ. Thus, we get

o = =
_— O
=]
-]
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Ordinal Variables

A discrete ordinal variable resembles a categorical variable, except that the M states of the ordinal
value are ordered in a meaningful sequence.

y. For example, professional ranks are often enumerated in a sequential order, such as assistant,

associate, and full for professors.

o f‘,‘_;‘ —1
Lif — M_Jf' 1

M ; ordered states
Replace each x;y by its corresponding rank, rjr € {1,..., My}.

Example

There are three states for test-2, namely fair, good, and excellent, that is Mf = 3. For step 1, if we
replace each value fortest-2 by its rank, the four objects are assigned the ranks 3, 1, 2, and 3,
respectively. Step 2 normalizes the ranking by mapping rank 1 to 0.0, rank 2 to 0.5, and rank 3 to 1.0.
For step 3, we can use, say, the Euclidean distance , which results in the following dissimilarity matrix:

0
0
05 05 0
0 1.0 05 O

Ratio-Scaled Variables

A ratio-scaled variable makes a positive measurement on a nonlinear scale, such as an exponential
scale, approximately following the formula Ae® or Ae™®

Apply logarithmic transformation to a ratio-scaled variable f having value xi f for object i by using the
formula yis = log(xif). The yi values can be treated as interval-valued

Example:

This time, we have the sample data of Table 7.3, except that only the object-identifier and the ratio-
scaled variable, test-3, are available. Let’s try a logarithmic transformation. Taking the log of test-3
results in the values 2.65, 1.34, 2.21, and 3.08 for the objects 1 to 4, respectively. Using the Euclidean
distance on the transformed values, we obtain the following dissimilarity matrix:

0
1.31 0
0.44 087 O

043 174 087 0



